EXERCISES [MAI 2.15-2.16]

POWER AND EXPONENTIAL MODELS

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. (a)

y = 0.2x	y is proportional to x
$y = 3.7x^2$	y is proportional to the square of x
y = 2.15 / x	y is inversely proportional to x
$y = 1/(3x^2)$	y is inversely proportional to the square of x

(b)		
	P = kQ	P is proportional to Q
	$P = kQ^3$	P is proportional to the cube of Q
	$P^2 = kQ^3$	The square of P is proportional to the cube of Q
	$PQ^2 = k$	P is inversely proportional to the square of Q

2. (a) The distance travelled is proportional to the square of the time.

(b) If g remains constant: the force is proportional to the mass.If m remains constant: the force is proportional to the acceleration.If F remains constant: the mass is inversely proportional to the acceleration.

$$3. \qquad S = \frac{k}{T^2}$$

S = 10 when T = 0.2: $10 = \frac{k}{0.2^2} \Rightarrow k = 0.4$.

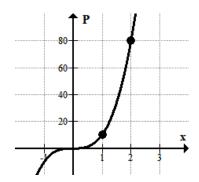
Hence, $S = \frac{0.4}{T^2}$

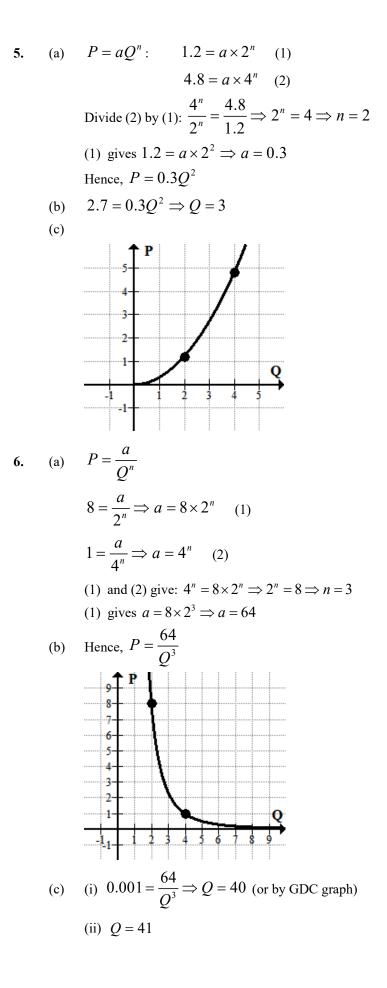
4.

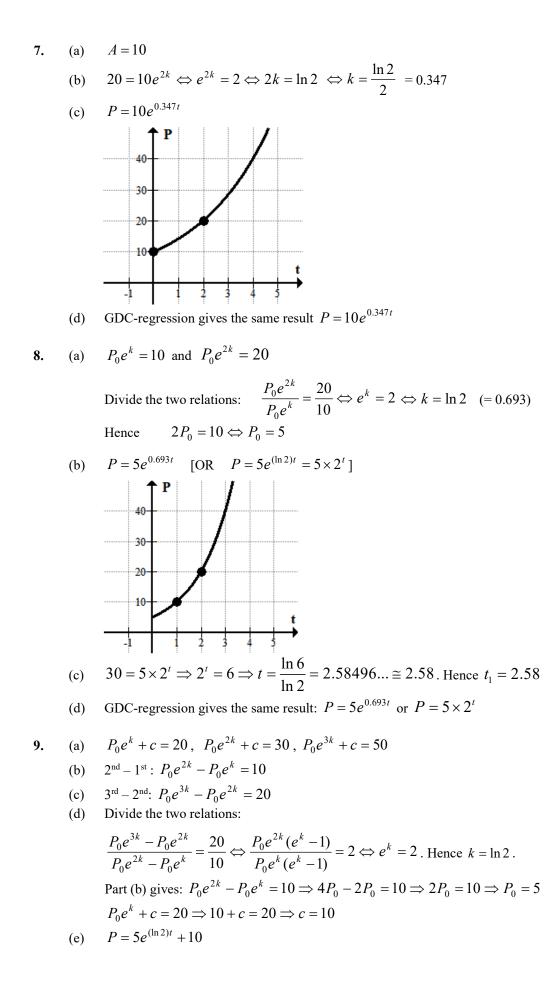
 $P = ax^{n}: \quad 10 = a \times 1^{n} \implies a = 10,$ $80 = a \times 2^{n} \implies 80 = 10 \times 2^{n} \implies 2^{n} = 8 \implies n = 3$ Hence $P = 10x^{3}$

- (b) $P = 10 \times 1.5^3 \Longrightarrow P = 33.75$
- (c) $20 = 10 \times x^3 \Longrightarrow x^3 = 2 \Longrightarrow x = \sqrt[3]{2}$
- (d)

(a)







10. (a)
$$P_0 e^k + c = 75.50$$
, $P_0 e^{2k} + c = 63.63$, $P_0 e^{3k} + c = 53.90$
(b) $2^{nd} - 1^{st} : P_0 e^{2k} - P_0 e^k = -11.87$
 $3^{rd} - 2^{nd} : P_0 e^{3k} - P_0 e^{2k} = -9.73$
Divide the two relations:
 $\frac{P_0 e^{3k} - P_0 e^{2k}}{P_0 e^{2k} - P_0 e^k} = \frac{-9.73}{-11.87} \Leftrightarrow \frac{P_0 e^{2k} (e^k - 1)}{P_0 e^k (e^k - 1)} = 0.81971 \Leftrightarrow e^k = 0.81971$
 $k = 0.19880$, so $k = -0.2$ to 1dp
(c) $P_0 e^{2k} - P_0 e^k = -11.87 \Rightarrow P_0 e^{-0.4} - P_0 e^{-.02} = -11.87$
 $\Rightarrow P_0 = 80$
 $P_0 e^{-0.2} + c = 75.50 \Rightarrow 80e^{-0.2} + c = 75.50 \Rightarrow 80e^{-0.2} + c = 75.50$
 $\Rightarrow c = 10$
(d) $P = 80e^{(-0.2t)} + 10$

11. (a)
$$N = 10$$

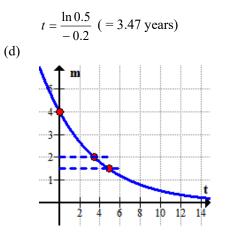
(b) At $t = 2$, $N = 10e^{0.4(2)}$
 $N = 22.3$ (3 sf) Number of leopards = 22

(c) If
$$N = 100$$
, then solve $100 = 10e^{0.4t}$
 $10 = e^{0.4t}$ hence $\ln 10 = 0.4t$
 $t = \frac{\ln 10}{0.4} \sim 5.76$ years (3 sf)
(d) $t = \frac{\ln 2}{0.4}$ (= 1.73 years)

12. (a)
$$p = 100e^0 = 100$$

- (b) $200 = 100e^{0.05t}$, so $2 = e^{0.05t}$ $\ln 2 = 0.05t$ $t = \ln 2/0.05 = 13.9$ (c)
 - P 250 200 150 100 50 5 10 15 20

- **13.** (a) Initial mass $\Rightarrow t = 0$, mass = 4
 - (b) $1.5 = 4e^{-0.2t}$ (or $0.375 = e^{-0.2t}$) ln 0.375 = -0.2tt = 4.90 hours
 - (c) When m = 2 (half of the initial value)

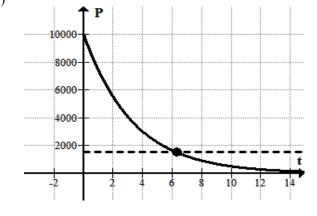


14. (a)
$$10\ 000e^{-0.3t} = 1500$$

Taking logarithms $-0.3t \ln e = \ln 0.15$

$$t = \frac{\ln 0.15}{-0.3} = 6.32$$
 7 (years) (or directly by GDC SolveN or Graph)

(b)



15. (a)
$$1 = (1/e)e^{5k}$$
, so $e = e^{5k}$ so $5k=1$ so $k = 0.2$

(b)
$$100 = \frac{1}{e}e^{0.2t}$$
 $t = \frac{\ln 100 + 1}{0.2} (= 28.0)$

(c) See graph on GDC)

16. (a) LINEAR:
$$P = 37.1Q - 76.6$$

POWER: $P = 1.01Q^{2.95}$
QUADRATIC: $P = 10.6Q^2 - 38.2Q + 41.65$
EXPONENTIAL: $P = 1.48e^{0.9Q}$ OR $P = 1.48 \times 2.46^Q$

(b) Although the quadratic model is closer to the points (so it could also be a choice) the power model looks better since we know that P is an increasing function of Q.

17.	(a)	(i)	2420	
		(ii) $1420 + 100n > 2000 \implies n > 5.8$		
		1999 (accept 6^{th} year or $n = 6$)		
	(b)	(i)	$1\ 200\ 000(1.025)^{10} = 1\ 536\ 101$ (accept 1 540 000 or 1.54(million))	
		(ii)	$\frac{1536\ 101 - 1\ 200\ 000}{1200\ 000} \times 100 \qquad 28.0\% \text{ (accept } 28.3\% \text{ from } 1\ 540\ 000)$	
		(iii)	(iii) $1\ 200\ 000(1.025)^n > 2\ 000\ 000$ (accept an equation)	
		EITHER directly by GDC $n > 20.69$ $n = 21$		
			OR $n \log 1.025 > \log\left(\frac{2}{1.2}\right) \Rightarrow n > 20.69$	
			2014 (accept 21^{st} year or $n = 21$)	
	(c)	(i)	$\frac{1200000}{1420} = 845$	
		(ii)	$\frac{1200000(1.025)^n}{1420+100n} < 600 \Rightarrow n > 14.197 $ 15 years	
18.	(a)	$V(5) = 10000 \times (0.933^5) = 7069.8 \dots = 7070 (3 \text{ sf})$		
	(b)	We want t when $V = 5000$		
		$5000 = 10000 \times (0.933)^t \implies 9.9949 = t$		
		After 10 minutes 0 seconds, to nearest second (or 600 seconds).		
	(c)	$0.05 = 0.933^t \implies t = 43.197 \text{ minutes } \approx 3/4 \text{ hour}$		
	(d)	(i)	$10000 - 10000(0.933)^{0.001} = 0.693$	
		(ii)	Initial flow rate = $\frac{dV}{dt} = \frac{0.693}{0.001} = 693 = 690 (2 \text{ sf})$	
			OR Later on we may use derivatives to find this rate: $\frac{dV}{dt} = 690$ (when $t = 0$)	